ON NONABELIAN p-GROUPS OF A GIVEN ORDER

ADEBISI, S.A.

Abstract. In every nonabelian p-group G, possessing two cyclic subgroups X_i and X_j , the quotient group of G by X_i is isomorphic to the cyclic group $X_j \text{ for } i, j \in \{1, 2\}, i \neq j.$

Moreover, if p > 2 and G is metacyclic, possessing a nonabelian section Y, of order p^3 , then Y is a trivial subgroup of G.

This paper proposes solution to problem $8^0(1)$ of section 124 in [Ber.Y].

1. Introduction

Many of the basic properties of finite p-groups were proved by Burnside, Frobenius, Sylow and a host of other Mathematicians.

This paper purposes to present some of the input efforts in classifying the pgroups most especially, those with a cyclic subgroup of index p. Part of the work also leads to the computation of the number of subgroups of a given order in a metacyclic p-group.

2. Basic Definitions and Notations

- * $B^x=x^{-1}Bx=\{b^x|b\in B\}$ for $x\in G,\,B\subseteq G.$ * $[a,b]=a^{-1}b^{-1}ab=a^{-1}a^b.$ The commutator of elements a and b of a group
- * |W| is the cardinality of the set W. If G is a finite group, then |G| is called the order of G.
- $* \circ (x)$ is the order of an element x of G.
- * cl(G) is the nilpotence class of a p-group G. Here, there exists a series given by: $G = G_0 \ge G_1 \ge \cdots \ge G_n \ge G_{n+1} = \{e\}$. And we say that G is of class n. We then write cl(G) = n > 1.
- * A p-group of maximal class is a nonabelian group G of order p^m , $m \geq 3$ with cl(G) = m - 1 > 1.
- * Let $G = G_1 \times \cdots \times G_n$, $A \leq G$ and $a \in A$. Then $a = (a_1, \ldots, a_n)$, where $a_i \in G_i \ \forall i$. Define a projection $\pi_i : A \longrightarrow G_i$, setting $\pi_i(a) = a_i$, all $a \in A$. Then, π_i is a homomorphism and $A_i = \pi_i(A)$ is an epimorphic image of A. This is called the section of A. Obviously, $A \leq A_1 \times \cdots \times A_n$.
- * A section of a group G is an epimorphic image of some subgroups of G.
- * $\Omega_n(G) = \langle x \in G | \circ (x) \le p^n \rangle$
- $* \ \mathcal{V}_n(G) = \langle x^{p^n} | x \in G \rangle$
- * $A \triangleleft B \Longrightarrow A$ is a nontrivial normal subgroup of G, where $H > \{1\}$.
- * A p-group G is said to be homocyclic if it is of type $(p^n, p^n, \dots, p^n), n > 0$.

Key words and phrases. Nonabelian group, quotient group, cyclic group, metacyclic, section, homocyclic, dihedral group, quaternion group, maximal class, pyramidal group.

ADEBISI, S.A.

* Metacyclic Group: This is a group G in which both its commutator subgroup G' and the quotient group G/G' are cyclic. It has a cyclic normal subgroup L such that G/L is also cyclic.

3. Proof of the Results

The following Theorem was given in 1897 by Burnside, in his book: Theory of Groups of Finite Order (first edition).

Theorem 1 [see Ber. Y., Mar, H.]. Suppose that G is a nonabelian p-group, $|G| = p^{n+1}$ and $\langle x \rangle = A \subseteq G$, of index p. Then, one of the following groups is isomorphic to G.

- (i) $R_{p^{n+1}} = \langle x, y | x^{p^n} = y^p = 1, \ y^{-1}xy = x^{1+p^{n-1}} \rangle$ where $n \ge 3$ if p = 2.
- (ii) For p=2

2

(a) The Dihedral Group given by

$$D_{2^{n+1}} = \langle x, y | x^{2^n} = y^2 = 1, \ yxy = x^{-1} \rangle$$

(b) The Generalized Quaternion Group given by

$$Q_{2^{n+1}} = \langle x, y | x^{2^n} = 1, \ y^2 = x^{2^{n-1}}, y^{-1}xy = x^{-1} \rangle$$

or

(c) The Semidihedral Group

$$SD_{2^{n+1}} = \langle x, y | x^{2^n} = y^2 = 1, \ yxy = x^{-1+2^{n-1}} \rangle; \ n > 2$$

Definition: Let G be a group. If G is nonabelian but all its proper subgroups are abelian, then G is said to be minimal nonabelian.

Proposition 1: [Ber, Y.]: Suppose that G is a metacyclic p-group containing a nonabelian subgroup V of order p^3 . Then

- (i) if p = 2, G is of maximal class
- (ii) if p > 2, then $|G| = p^3 \Rightarrow G = V$.

Lemma 2 (see [Ber, Y.][Scot.]): Suppose that G is a nonabelian metacyclic p-group.

(i) If G is of order p^4 and exponent p^2 then G is minimal nonabelian. Moreso, if p=2, then G is isomorphic to the group

$$H_2 = \langle x, y | x^4 = y^4 = 1, \ x^y = x^3 \rangle,$$

where all subgroups of order 2 are characteristic in G. All maximal cyclic subgroups of G have order p^2 .

- (ii) By Proposition 1. If G has a nonabelian subgroup of order p^3 , then it is of maximal class. To be specific, if p > 2, then $|G| = p^3$.
- (iii) Let B be a normal subgroup of G and p = 2 such that G/B is nonabelian of order 2^3 , then B is characteristic in G.
- (iv) By Theorem 1 and Lemma 2, there are exactly four series of nonabelian 2-groups with cyclic subgroup of index 2:viz : R_{2^n} , D_{2^n} , Q_{2^n} , and SD_{2^n} .

Lemma 3 (O. Taussky). Suppose that G is a nonabelian 2-group and |G:G'| = 4. Then G is as in theorem 1 (ii(a),(b),(c)).

3

Lemma 4 [Ber, Y.] Let G be a metacyclic 2-group with a nonabelian section of order 2^3 . If G is not of maximal class, then

- (i) There exists a normal subgroup $T \triangleleft G$ such that G/T is isomorphic to Q_{2^3} and $G/\mathfrak{V}_2(G)$ is isomorphic to H_2 .
- (ii) $\mathcal{O}_1(G)$ has no nonabelian section of order 2^3 .

Here comes the analysis of the first part of the assertion.

Let G be as in theorem 1.

If $B_i \subseteq G$, $i \in \{1, 2\}$, such that B_i is cyclic, we assert that

$$|G/B_i| = |B_i|, i \neq j$$

In doing this, it suffices to show that G/B_i is isomorphic to B_j , $i \neq j$, $i, j \in \{1, 2\}$. Define a mapping as follows

$$f : (G/B_i) \longrightarrow B_j \quad i \neq j$$

: $xB_i \mapsto y$ (*)

We show that (*) is (i) a monomorphism, (ii) an epimorphism.

Suppose that $|B_i| < |B_j|$, $i \neq j$. Then for all $x \in G$, there exists $y \in B_j$ such that $f(xB_i) = y$.

Also, if $f(x_1B_i) = f(x_2B_i) = y$.

Then,

$$x_1 B_i = x_2 B_i \tag{2}$$

And by cancellation law (see [Kur.], [Ros]) post multiply both sides of (2) by B_i^{-1} we have that

$$\begin{array}{rcl} x_1 B_i B_i^{-1} & = & x_2 B_i B_i^{-1} \\ \Rightarrow & x_1 & = & x_2. \end{array}$$

This confirms (i) and (ii) as stated above.

The case is similar for $|B_i| > |B_j|$, $i \neq j$, $i, j \in \{1, 2\}$

In dealing with the second aspect of the problem, the following items are very imperative:

Define the upper Ω -series:

$$\{1\} = \Omega_{(0)}(G) < \Omega_{(1)}(G) < \dots < \Omega_{(s)}(G) < \dots$$

of a p-group G as follows:

 $\Omega_{(0)}(G) = \{1\}$

 $\Omega_{(i+1)}(G)/\Omega_{(i)}(G) = \Omega_1(P/\Omega_{(i)}(G)), i = 0, 1, \dots$

Clearly, $\Omega_i(G) \leq \Omega_{(i)}(G)$.

 $\Omega_{(i)}(G) = \Omega_{(i+1)}(G)$ implies $\Omega_{(i)}(G) = G$.

But $\Omega_{(i)}(G) = \Omega_{(i+1)}(G)$ does not imply that $\Omega_i(G) = G$.

Now, set

$$\left|\Omega_{(i+1)}(G):\Omega_{(i)}(G)\right| = p^{t_{i+1}}$$

 $\left|\mho_{i}(G):\mho_{i+1}(G)\right| = p^{v_{i+1}}, i = 0, 1, \dots$

Definition A_1 [Ber. Y.].

- (i) G is said to be upper pyramidal if $t_1 \geq t_2 \geq \cdots$
- (ii) G is said to be lower pyramidal if $v_1 \geq v_2 \geq \cdots$.

Definition A_2 : A p-group G is said to be generalized homocyclic if it satisfies the following conditions as noted in definition A_1 .

(i)
$$t_1 = t_2 = \dots = v_1 = v_2 = \dots$$

ADEBISI, S.A.

- (ii) $\Omega_{(i+1)}(G)/\Omega_{(i)}(G)$ are abelian for all nonegative integer i.
- (iii) If D is a term of the upper or lower central series of G, then $D = \Omega_i(G)$ for some nonnegative integer i.

If G is a generalized homocylic group of exponent p^e , then $\Omega_{(i)}(G) = \Omega_i(G)$ and $\exp(\Omega_i(G)) = p^i \ \forall i \leq e$ [Ber, Y.].

Now, suppose that a metacyclic p-group, p > 2 has a nonabelian section Y, of order p^3 . If p = 2 and G is not of maximal class, then the result is in harmony with Lemma 4 (i) and (ii).

On the other hand, if p > 2, then going by induction on |G|, assuming G is nonabelian. Then, by Lemma 3, if G is neither cyclic nor a 2-group of maximal class, then $\Omega_1(G) \cong Ep^2$.

By proposition 1, $|G| = p^2$.

 $\Longrightarrow G = Y \text{ (its section)}$

 $\Longrightarrow Y$ is a trivial subgroup of G.

If G is nonabelian of order p^4 and exponent p^2 , it is not generalized homocyclic (see section 8 of [Ber, Y]). (We have that $t_1 = t_2 = v_1 = v_2 = 2$),

If p > 2, then G is metacyclic. So, $|G/G'| = p^3$ and $G' \neq \Omega_1(G)$

References

4

[Ber. Y.]: Berkovich, Y. (2008). Groups of Prime Power Order (I, II, III). De Ge. Berlin N.Y.

[Kuk, A]: Kuku, A.O. (1992). Abstract Algebra, Ibadan Univ. Press.

[Kur]: Kurosh, A.G. (1960). The Theory of Groups. Chelsea Pub. Co. N.Y.

[Mar. H]: Marshall, H. (1959). The Theory of Groups. The Macmillan Company, N.Y.

[Ros.]: Rose John S. (1978). A Course on Group Theory.

[Scot]: Scot, W.R. (1964). Group theory. Prentice Hall.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA $E\text{-}mail\ address$: adesinasunday@yahoo.com